PAGE INDEX
MSI N760 Temperatures
We’re at the start of a transition: for years the PC industry has produced faster and more powerful CPUs and GPUs, which always came with ever-higher power draws. But as the industry moves to smaller and smaller fabrication processes, we’re seeing power draws drop, and clever designs save even more power. Users benefit from GPUs that disable large portions of their circuitry when idle, leading to dramatically lower power draws and very cool idle temperatures. At the other end of the scale, reduced power at the higher end means smaller coolers, quieter fans, and less heat to worry about dissipating.
At the start of this test, I measure the idle temperature of the card with the card sitting at the Windows desktop, using the GPU-Z utility. Next, I start FurMark’s stress test and let it run until the temperature curve flattens and the temperature has not varied more than 1 degree in the last five minutes.
FurMark does two things extremely well: drive the thermal output of any graphics processor higher than applications of video games realistically could, and it does so with consistency every time. FurMark works great for testing the stability of a GPU as the temperature rises to the highest possible output. The temperatures discussed below are absolute maximum values, and not representative of real-world performance.
Keep in mind that my testbench is open to the air, and that affects the results by a lot. Still, the proven capability of the Twin Frozr design keep the N760 TF 2GD5/OC very cool.
Ambient Temperature | 20C |
XFX R7790 Idle Temperature | 31C |
XFX R7790 Load Temperature | 67C |
VGA Power Consumption
The new generation of video cards– AMD’s Southern Islands and NVIDIA’s Kepler— are certainly fast, but their new power saving features are almost as impressive. The move to a smaller process has helped, but both products benefit from a variety of power-saving techniques, including aggressively underclocking and undervolting themselves in low demand scenarios, as well as turning off unused portions of the card. Both companies also use other, proprietary methods to keep power usage low.
To measure isolated video card power consumption, Benchmark Reviews uses the Kill-A-Watt EZ (model P4460) power meter made by P3 International. A baseline test is taken without a video card installed inside our test computer system, which is allowed to boot into Windows 7 and rest idle at the login screen before power consumption is recorded. Once the baseline reading has been taken, the graphics card is installed and the system is again booted into Windows and left idle at the login screen. Another power reading is taken when the display sleeps, and then I measure the power under a heavy gaming load. Our final loaded power consumption reading is taken with the video card running a stress test using FurMark.
Below is a chart with the system totals displayed in watts for each specified test product:
Situation | Power | |
Windows login, no video card | 52 watts | |
Windows login, video card | 68 watts | |
Windows desktop | 69 watts | |
Windows desktop, display sleep | 66 watts | |
Gaming load | 155 watts | |
FurMark load | 215 watts |
Most moder graphics cards can drop the clockspeed and operations of the GPU in order to make it consume less power at idle. The N760 TF 2GD5/OC is no different and video card itself is only responsible for somewhere around 18 watts of power in idle mode. Even under the most intensive gaming conditions, the GTX 760 consumes only around 100 watts of power. That number rises to around 150 or so when stressing the GPU beyond what any normal application would.
Most Recent Comments